- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0001000003000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Piskac, Ruzica (4)
-
Hallahan, William T. (3)
-
Santolucito, Mark (2)
-
Hallahan, William (1)
-
Kolesar, John C. (1)
-
Morton, Kairo (1)
-
Shum, Elven (1)
-
Zhai, Ennan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Program equivalence checking is the task of confirming that two programs have the same behavior on corresponding inputs. We develop a calculus based on symbolic execution and coinduction to check the equivalence of programs in a non-strict functional language. Additionally, we show that our calculus can be used to derive counterexamples for pairs of inequivalent programs, including counterexamples that arise from non-termination. We describe a fully automated approach for finding both equivalence proofs and counterexamples. Our implementation, Nebula, proves equivalences of programs written in Haskell. We demonstrate Nebula's practical effectiveness at both proving equivalence and producing counterexamples automatically by applying Nebula to existing benchmark properties.more » « less
-
Hallahan, William T.; Zhai, Ennan; Piskac, Ruzica (, Formal Methods in System Design)
-
Morton, Kairo; Hallahan, William; Shum, Elven; Piskac, Ruzica; Santolucito, Mark (, Proceedings of the AAAI Conference on Artificial Intelligence)Programming-by-example (PBE) is a synthesis paradigm that allows users to generate functions by simply providing input-output examples. While a promising interaction paradigm, synthesis is still too slow for realtime interaction and more widespread adoption. Existing approaches to PBE synthesis have used automated reasoning tools, such as SMT solvers, as well as works applying machine learning techniques. At its core, the automated reasoning approach relies on highly domain specific knowledge of programming languages. On the other hand, the machine learning approaches utilize the fact that when working with program code, it is possible to generate arbitrarily large training datasets. In this work, we propose a system for using machine learning in tandem with automated reasoning techniques to solve Syntax Guided Synthesis (SyGuS) style PBE problems. By preprocessing SyGuS PBE problems with a neural network, we can use a data driven approach to reduce the size of the search space, then allow automated reasoning-based solvers to more quickly find a solution analytically. Our system is able to run atop existing SyGuS PBE synthesis tools, decreasing the runtime of the winner of the 2019 SyGuS Competition for the PBE Strings track by 47.65% to outperform all of the competing tools.more » « less
-
Santolucito, Mark; Hallahan, William T.; Piskac, Ruzica (, CHI EA '19 Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems)
An official website of the United States government
